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Mitchell [ 1 I was the first who presented a rigorous theory for the 
torsion of a curved bar in the shape of a circular, ring segment, anal- 
ogous to the St. Venant’s theory for the prismatic bar. Mitchell con- 
sidered not only an isotropic case, but also the case of a cylindrical 

anisotropy and at the same time orthotropy. A group of other authors 

considered the torsional problem, Gohner [ 2 I, Langhaar [ 3 I, Solianik- 
Krassa [ 4 I, Rabinovich [ 5 I, and others, for the isotropic bars, and 
Chattarji [ 6 I for the bars having transverse isotropy. The obtained 
results were either exact or approximate for some particular cross- 
sections of bars. 

The objective of this note is to demonstrate that the exact torsion 
theory can be extended to the case when a bar exhibits a more complex 
anisotropy characterized only by the elastic symmetry about any plane of 
the transverse (radial) cross-section, but otherwise arbitrary. 

1. Statement of the problem and general equations. Consider 
a curved bar of an arbitrary cross-section in the shape of a circular 
ring segment. Denote by R the radius of the center line of the bar, and 

by a the angle between the end faces. Let the distributed force acting on 

the lateral faces be reduced to tve forces Q and a twisting moment H= QR, 
or equivalent to it, two equal and oppositely directed forces Q acting 

along the axis of rotation t (see Figure). 

We assume that the bar has a curvilinear anisotropy such that every 

transverse cross-sectional plane (i.e. radial) which is a plane of 

elastic symmetry is subject to the generalized Hooke’s law and undergoes 

small deflections. 

Let the z-axis be the axis of rotation. ‘lhe generalized Hooke’s law 

relationships in cylindrical coordinates r, 8, z, shown in the figure, 

are as follows: 
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Er = a11 or + al2 oe -t al3 Q, + ux6 T,, 

Ee = al2 or + a22 =O + a23 0, + a26 T,, 

Ez = aI3 or + az3 fJe + a33 Qz -t a36 -rr 

Trt = aI6 (Jr + a26 Oe + a36 0, + a5s 5r.z 

Toz = a44 582 -t a46 =,G 

rrG = a46 % + a6G +I 

(1-l) 

In the general case the coefficients aik, thirteen in number, may be 

functions of the three coordinates. We make only one restriction, viz. 

that the three coefficients a,,, aa6, ah6 are independent of 8, the other 

ten coefficients being arbitrary. If we supplement the system ( 1.1) by 

three equilibrium equations for the continuous medium, we obtain nine 

equations for the determination of the six stress components and the 

three displacements components u, V, 10 along the coordinate directions r, 

8 and z. 

Let us assume 

bar 

and consequently 

then reduce to 

that in the given bar, as in the case of an isotropic 

a, = a0 = u: = qz = 0 (1.2) 

fez and z ,e are independent of 8. Equations (1.1) will 



Torsion of an onisotropic curved bar 636 

Integrating the first three equations, we express the displacements 

by three arbitrary functions 

zz = U(0, z), 2’ = V (r, 2) - ’ Ud0, 
\ 

w = TV (r, e) (1.4) 

From (1.3) we find general forms of the functions U, W and the 

relationship between V and the stresses. BUS, the final formulas and 

equations are 

where u*, V’ and w’ are “rigid” displacements 

u’ =3 2 (q cos 0 -~w,sin0)+acos~-+-bsin6 

u) =r- z(w,sin B+ (u,eosQ)--a sine i hcosfJ + IZ+~ (1.7) 

W8 = -~~~~cosO-#,sin0)+c 

Ihe constants.@, oi' U, b, c are to be determined. 

‘Ihe stresses on the lateral surface have to satisfy the following 

condition: 

T’rfJ cos (n, r) + TQz cos (72, 2) = 0 (1.8) 

On the end faces, as well as in any transverse cross-section, there 

must be satisfied the equilibriua conditions 

ss 
Tredrdz = 0, 

!a 
‘tjzdzdz = Q 

t 
(1.9) ss tr,ez--?er(r-R)fdrdz=H=QR 

where the integrals are taken over the whole area of the 

cross-section. 

transverse 

It is seen from (1.5) to (1.7) that the displacements do not contain 

elastic moduli explicitly, i.e. in their form these equations do not 

differ from equations for the displacements of isotropic bars 15 I. ‘lhe 

influence of the kind of anisotropy considered here is shown in that the 

function v1 is determined from more complex equations (1.6) and the con- 
stant 8 is different. 
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2. Determination of the stress function, the constant 
and the displacements. 'lhe further development of the solution of 
the problem is the same as in the isotropic case, (see, e.g. C 5 1 1. We 
introduce the stress function Ftr, z) setting 

fi2 L3F R2 aF -- “er = r2 &, t q. = ---- 
r.2 az (2-l) 

Eliminating u1 from (1.7) we obtain the following equation for F: 

a '1 1 ( f3F _- 
ar rs a.44 -&- -u46~)]-~[.~(~46~-aBG~)]--~ (2.2) 

‘Ihe problem thus reduces to a determination in the region of the 
transverse cross-section of a function F which satisfies (2.2) and which 
is constant on the contour of the cross-section. Function F is deter- 
mined within a multiplicative constant 8 which is found from (1.9). 

In the case of a simply-connected region, it is possible to assume 
that F = 0 on the contour. All equations of (1.9) are thus reduced to 

2R3 
ss 

;drdz = H (2.3) 

In order to determine six arbitrary constants oi, a, 6, c it is 
necessary, in addition, to specify the end conditions. We shall consider 
one of the possible versions. We shall assume that the right end of the 
bar is clamped in such a way that the center of gravity of the end 
cross-section and the linear element associated with it directed along 
the axis of the bar and a plane element in the r&plane remain fixed. We 
have: 

alA aw aw u=v=w=Q, ae=ao=-=O 
r=R 

i3r nPH e=z=o (2.4) 

‘Ihe displacements are: 

u = 8Rz sin 0, v = q (r, z) - v1 (R, 0) -8. - 8Rz (1 - cos 0) (2.5) 

w = BR(RB--rsin0) 

‘Ihe component of rotation about the axis tangent to the axis of the 
bar r = R is 

00 = %RsinO (2.G) 

From (2.3) we obtain 
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Ihe bending of the left end is 

(2.7) 

(2.8) 

With the increasing R the expression (2 5) tends to the expressions 

for the displacements of the twisted straight bar. Rabinovich suggested, 

analogously to the prismatic bar, that I) and C be referred to as the 

*angle of twist” and “torsional rigidity” ) respectively [ 5 1. 

3. Homogeneous bar with cylindrical anisotropy. In the case 

of a homogeneous bar with cylindrical anisotropy, with the axis of aniso- 

tropy directed along the axis of rotation, all coefficients aik in (1.1) 

are constants. We introduce new variables 

where Gez, G,e are the shear awduli which characterize the changes of 

the angles between the r and 6 directions in the planes normal to the 

axis caused by the stresses re, and r ,,e, respectively. With these new 

coordinates Equation (2.2) will be transformed into the equation for the 

isotropic bar with the shear modulus Go, and “angle of twistn 

(3.2) 

‘Ihe problem is thus reduced to the torsion problem of an isotropic 

bar of the same radius R, and with the area of the cross-section obtained 

from a given one by means of the affine transformation (3. l), since on 

the contour of the mapped region (simply connected) F also must be zero. 

From the stresses at a point p, 4 of an isotropic bar (with an accuracy 

within a multiplicative constant Go,) we can determine the stresses 

fez, r d at a corresponding point of an anisotropic bar 

(3.3) 

The constant 8 for a given moment H can be found from (2.7). ‘ihe 

rigidity of the anisotropic bar connected with the rigidity of an 

auxiliary isotropic bar CO by means of (2.7) and (3.1) has, in this case, 

a simple expression 
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C=)&A--m2 c, (34 

In the case of an orthotropic material a,a = I = 0. 

In cases where sufficiently accurate data exist for isotropic bars, 

Equations (3.3) and (3.4) permit an easy application of these data for 

the anisotropic cases, thus avoiding cumbersome m~ipu~ations and com- 

putations. 

Consider, as an exanple, an orthotropic bar of a rectangular cross- 

section, &note by R, b, h its radius, and the width and height of its 

cross-section, and by R, b,, h,, the same magnitudes for the auxiliary 

isotropic case. In [ 5 1 all necessary formulas and numerical data are 

given for the isotropic rectangular bars. Torsional rigidity and stresses 

at the mid-points of the hr-sides closest to the z-axis are determined 

from the formulas 

‘lhe values of the coefficients k, k, for a series of ratios 2R/b,, 
b ,/h, which are used here, are presented in Tables 1 and 2 of [ 5 I . 

For the calculation of the torsional rigidity and stresses in an 

orthotropic bar for which 

b (.& 

G et 
-z--= , 
h 

..-=n2 
G l-e 

we must consider an isotropic 

sions b, = b, h, = h/n, b,/h, 

(3.6) 

bar with the s8ne radius R with the dimen- 

= n. From (3.31, (3.4) and (3.51 we obtain 

For the sake of definiteness, let us take 2R/b = 3; a = 3 and deter- 

mine formulas for the two ~lat~onshi~s between the shear moduli. 

C = G,, h’O.75 k (3,6), 
H !&(3, 6) _I~~ 

@do = h3 3k (3, 6) 
(3.6) 

In [ 5 f the values of k (3.6) and k, (3.6) are not shown. They can be 

found approximately from tables presented in 15 1 by means of linear 

interpolation. Thus, we obtain k (3.6) = 0.355, k, (0.36 = 1.53 
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C = G,, h4 0.266, (li& -2 G2.87 (3.9) 

Case 2. Go, = 0.25 G,.o (Go, < G,o); n = 0.5 

C = G,, h4 12 k (3,1,5)=G,, h4 2.544, (q&, = + 0.969 

For the isotropic bar with 2R/b = 3; tx = 3, we have 

C = G,, h4 0.912, @& = s 1.556 

(3.10) 

(3.11) 

*aring all these data (and the results calculated for other dimen- 

sions not presented here) we observe that for a given Go, the torsional 

rigidity is decreasing with increasing ratio of the shear moduli, and 

vice-versa. The behavior of the stress (r~~)~ is reversed; for a given 

twisting moment the stress is increasing with increasing ratio Go /Grd . 

The isotropic case falls, as can be seen from (3.9) through (3. llf, 

between Cases 1 and 2. 
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